About Kernel Documentation Linux Kernel Contact Linux Resources Linux Blog

Documentation / DocBook / genericirq.tmpl


Based on kernel version 4.10.8. Page generated on 2017-04-01 14:43 EST.

1	<?xml version="1.0" encoding="UTF-8"?>
2	<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
3		"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
4	
5	<book id="Generic-IRQ-Guide">
6	 <bookinfo>
7	  <title>Linux generic IRQ handling</title>
8	
9	  <authorgroup>
10	   <author>
11	    <firstname>Thomas</firstname>
12	    <surname>Gleixner</surname>
13	    <affiliation>
14	     <address>
15	      <email>tglx@linutronix.de</email>
16	     </address>
17	    </affiliation>
18	   </author>
19	   <author>
20	    <firstname>Ingo</firstname>
21	    <surname>Molnar</surname>
22	    <affiliation>
23	     <address>
24	      <email>mingo@elte.hu</email>
25	     </address>
26	    </affiliation>
27	   </author>
28	  </authorgroup>
29	
30	  <copyright>
31	   <year>2005-2010</year>
32	   <holder>Thomas Gleixner</holder>
33	  </copyright>
34	  <copyright>
35	   <year>2005-2006</year>
36	   <holder>Ingo Molnar</holder>
37	  </copyright>
38	
39	  <legalnotice>
40	   <para>
41	     This documentation is free software; you can redistribute
42	     it and/or modify it under the terms of the GNU General Public
43	     License version 2 as published by the Free Software Foundation.
44	   </para>
45	
46	   <para>
47	     This program is distributed in the hope that it will be
48	     useful, but WITHOUT ANY WARRANTY; without even the implied
49	     warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
50	     See the GNU General Public License for more details.
51	   </para>
52	
53	   <para>
54	     You should have received a copy of the GNU General Public
55	     License along with this program; if not, write to the Free
56	     Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
57	     MA 02111-1307 USA
58	   </para>
59	
60	   <para>
61	     For more details see the file COPYING in the source
62	     distribution of Linux.
63	   </para>
64	  </legalnotice>
65	 </bookinfo>
66	
67	<toc></toc>
68	
69	  <chapter id="intro">
70	    <title>Introduction</title>
71	    <para>
72		The generic interrupt handling layer is designed to provide a
73		complete abstraction of interrupt handling for device drivers.
74		It is able to handle all the different types of interrupt controller
75		hardware. Device drivers use generic API functions to request, enable,
76		disable and free interrupts. The drivers do not have to know anything
77		about interrupt hardware details, so they can be used on different
78		platforms without code changes.
79	    </para>
80	    <para>
81	  	This documentation is provided to developers who want to implement
82		an interrupt subsystem based for their architecture, with the help
83		of the generic IRQ handling layer.
84	    </para>
85	  </chapter>
86	
87	  <chapter id="rationale">
88	    <title>Rationale</title>
89		<para>
90		The original implementation of interrupt handling in Linux uses
91		the __do_IRQ() super-handler, which is able to deal with every
92		type of interrupt logic.
93		</para>
94		<para>
95		Originally, Russell King identified different types of handlers to
96		build a quite universal set for the ARM interrupt handler
97		implementation in Linux 2.5/2.6. He distinguished between:
98		<itemizedlist>
99		  <listitem><para>Level type</para></listitem>
100		  <listitem><para>Edge type</para></listitem>
101		  <listitem><para>Simple type</para></listitem>
102		</itemizedlist>
103		During the implementation we identified another type:
104		<itemizedlist>
105		  <listitem><para>Fast EOI type</para></listitem>
106		</itemizedlist>
107		In the SMP world of the __do_IRQ() super-handler another type
108		was identified:
109		<itemizedlist>
110		  <listitem><para>Per CPU type</para></listitem>
111		</itemizedlist>
112		</para>
113		<para>
114		This split implementation of high-level IRQ handlers allows us to
115		optimize the flow of the interrupt handling for each specific
116		interrupt type. This reduces complexity in that particular code path
117		and allows the optimized handling of a given type.
118		</para>
119		<para>
120		The original general IRQ implementation used hw_interrupt_type
121		structures and their ->ack(), ->end() [etc.] callbacks to
122		differentiate the flow control in the super-handler. This leads to
123		a mix of flow logic and low-level hardware logic, and it also leads
124		to unnecessary code duplication: for example in i386, there is an
125		ioapic_level_irq and an ioapic_edge_irq IRQ-type which share many
126		of the low-level details but have different flow handling.
127		</para>
128		<para>
129		A more natural abstraction is the clean separation of the
130		'irq flow' and the 'chip details'.
131		</para>
132		<para>
133		Analysing a couple of architecture's IRQ subsystem implementations
134		reveals that most of them can use a generic set of 'irq flow'
135		methods and only need to add the chip-level specific code.
136		The separation is also valuable for (sub)architectures
137		which need specific quirks in the IRQ flow itself but not in the
138		chip details - and thus provides a more transparent IRQ subsystem
139		design.
140		</para>
141		<para>
142		Each interrupt descriptor is assigned its own high-level flow
143		handler, which is normally one of the generic
144		implementations. (This high-level flow handler implementation also
145		makes it simple to provide demultiplexing handlers which can be
146		found in embedded platforms on various architectures.)
147		</para>
148		<para>
149		The separation makes the generic interrupt handling layer more
150		flexible and extensible. For example, an (sub)architecture can
151		use a generic IRQ-flow implementation for 'level type' interrupts
152		and add a (sub)architecture specific 'edge type' implementation.
153		</para>
154		<para>
155		To make the transition to the new model easier and prevent the
156		breakage of existing implementations, the __do_IRQ() super-handler
157		is still available. This leads to a kind of duality for the time
158		being. Over time the new model should be used in more and more
159		architectures, as it enables smaller and cleaner IRQ subsystems.
160		It's deprecated for three years now and about to be removed.
161		</para>
162	  </chapter>
163	  <chapter id="bugs">
164	    <title>Known Bugs And Assumptions</title>
165	    <para>
166		None (knock on wood).
167	    </para>
168	  </chapter>
169	
170	  <chapter id="Abstraction">
171	    <title>Abstraction layers</title>
172	    <para>
173		There are three main levels of abstraction in the interrupt code:
174		<orderedlist>
175		  <listitem><para>High-level driver API</para></listitem>
176		  <listitem><para>High-level IRQ flow handlers</para></listitem>
177		  <listitem><para>Chip-level hardware encapsulation</para></listitem>
178		</orderedlist>
179	    </para>
180	    <sect1 id="Interrupt_control_flow">
181		<title>Interrupt control flow</title>
182		<para>
183		Each interrupt is described by an interrupt descriptor structure
184		irq_desc. The interrupt is referenced by an 'unsigned int' numeric
185		value which selects the corresponding interrupt description structure
186		in the descriptor structures array.
187		The descriptor structure contains status information and pointers
188		to the interrupt flow method and the interrupt chip structure
189		which are assigned to this interrupt.
190		</para>
191		<para>
192		Whenever an interrupt triggers, the low-level architecture code calls
193		into the generic interrupt code by calling desc->handle_irq().
194		This high-level IRQ handling function only uses desc->irq_data.chip
195		primitives referenced by the assigned chip descriptor structure.
196		</para>
197	    </sect1>
198	    <sect1 id="Highlevel_Driver_API">
199		<title>High-level Driver API</title>
200		<para>
201		  The high-level Driver API consists of following functions:
202		  <itemizedlist>
203		  <listitem><para>request_irq()</para></listitem>
204		  <listitem><para>free_irq()</para></listitem>
205		  <listitem><para>disable_irq()</para></listitem>
206		  <listitem><para>enable_irq()</para></listitem>
207		  <listitem><para>disable_irq_nosync() (SMP only)</para></listitem>
208		  <listitem><para>synchronize_irq() (SMP only)</para></listitem>
209		  <listitem><para>irq_set_irq_type()</para></listitem>
210		  <listitem><para>irq_set_irq_wake()</para></listitem>
211		  <listitem><para>irq_set_handler_data()</para></listitem>
212		  <listitem><para>irq_set_chip()</para></listitem>
213		  <listitem><para>irq_set_chip_data()</para></listitem>
214	          </itemizedlist>
215		  See the autogenerated function documentation for details.
216		</para>
217	    </sect1>
218	    <sect1 id="Highlevel_IRQ_flow_handlers">
219		<title>High-level IRQ flow handlers</title>
220		<para>
221		  The generic layer provides a set of pre-defined irq-flow methods:
222		  <itemizedlist>
223		  <listitem><para>handle_level_irq</para></listitem>
224		  <listitem><para>handle_edge_irq</para></listitem>
225		  <listitem><para>handle_fasteoi_irq</para></listitem>
226		  <listitem><para>handle_simple_irq</para></listitem>
227		  <listitem><para>handle_percpu_irq</para></listitem>
228		  <listitem><para>handle_edge_eoi_irq</para></listitem>
229		  <listitem><para>handle_bad_irq</para></listitem>
230		  </itemizedlist>
231		  The interrupt flow handlers (either pre-defined or architecture
232		  specific) are assigned to specific interrupts by the architecture
233		  either during bootup or during device initialization.
234		</para>
235		<sect2 id="Default_flow_implementations">
236		<title>Default flow implementations</title>
237		    <sect3 id="Helper_functions">
238		 	<title>Helper functions</title>
239			<para>
240			The helper functions call the chip primitives and
241			are used by the default flow implementations.
242			The following helper functions are implemented (simplified excerpt):
243			<programlisting>
244	default_enable(struct irq_data *data)
245	{
246		desc->irq_data.chip->irq_unmask(data);
247	}
248	
249	default_disable(struct irq_data *data)
250	{
251		if (!delay_disable(data))
252			desc->irq_data.chip->irq_mask(data);
253	}
254	
255	default_ack(struct irq_data *data)
256	{
257		chip->irq_ack(data);
258	}
259	
260	default_mask_ack(struct irq_data *data)
261	{
262		if (chip->irq_mask_ack) {
263			chip->irq_mask_ack(data);
264		} else {
265			chip->irq_mask(data);
266			chip->irq_ack(data);
267		}
268	}
269	
270	noop(struct irq_data *data))
271	{
272	}
273	
274			</programlisting>
275		        </para>
276		    </sect3>
277		</sect2>
278		<sect2 id="Default_flow_handler_implementations">
279		<title>Default flow handler implementations</title>
280		    <sect3 id="Default_Level_IRQ_flow_handler">
281		 	<title>Default Level IRQ flow handler</title>
282			<para>
283			handle_level_irq provides a generic implementation
284			for level-triggered interrupts.
285			</para>
286			<para>
287			The following control flow is implemented (simplified excerpt):
288			<programlisting>
289	desc->irq_data.chip->irq_mask_ack();
290	handle_irq_event(desc->action);
291	desc->irq_data.chip->irq_unmask();
292			</programlisting>
293			</para>
294		    </sect3>
295		    <sect3 id="Default_FASTEOI_IRQ_flow_handler">
296			<title>Default Fast EOI IRQ flow handler</title>
297			<para>
298			handle_fasteoi_irq provides a generic implementation
299			for interrupts, which only need an EOI at the end of
300			the handler.
301			</para>
302			<para>
303			The following control flow is implemented (simplified excerpt):
304			<programlisting>
305	handle_irq_event(desc->action);
306	desc->irq_data.chip->irq_eoi();
307			</programlisting>
308			</para>
309		    </sect3>
310		    <sect3 id="Default_Edge_IRQ_flow_handler">
311		 	<title>Default Edge IRQ flow handler</title>
312			<para>
313			handle_edge_irq provides a generic implementation
314			for edge-triggered interrupts.
315			</para>
316			<para>
317			The following control flow is implemented (simplified excerpt):
318			<programlisting>
319	if (desc->status &amp; running) {
320		desc->irq_data.chip->irq_mask_ack();
321		desc->status |= pending | masked;
322		return;
323	}
324	desc->irq_data.chip->irq_ack();
325	desc->status |= running;
326	do {
327		if (desc->status &amp; masked)
328			desc->irq_data.chip->irq_unmask();
329		desc->status &amp;= ~pending;
330		handle_irq_event(desc->action);
331	} while (status &amp; pending);
332	desc->status &amp;= ~running;
333			</programlisting>
334			</para>
335	   	    </sect3>
336		    <sect3 id="Default_simple_IRQ_flow_handler">
337		 	<title>Default simple IRQ flow handler</title>
338			<para>
339			handle_simple_irq provides a generic implementation
340			for simple interrupts.
341			</para>
342			<para>
343			Note: The simple flow handler does not call any
344			handler/chip primitives.
345			</para>
346			<para>
347			The following control flow is implemented (simplified excerpt):
348			<programlisting>
349	handle_irq_event(desc->action);
350			</programlisting>
351			</para>
352	   	    </sect3>
353		    <sect3 id="Default_per_CPU_flow_handler">
354		 	<title>Default per CPU flow handler</title>
355			<para>
356			handle_percpu_irq provides a generic implementation
357			for per CPU interrupts.
358			</para>
359			<para>
360			Per CPU interrupts are only available on SMP and
361			the handler provides a simplified version without
362			locking.
363			</para>
364			<para>
365			The following control flow is implemented (simplified excerpt):
366			<programlisting>
367	if (desc->irq_data.chip->irq_ack)
368		desc->irq_data.chip->irq_ack();
369	handle_irq_event(desc->action);
370	if (desc->irq_data.chip->irq_eoi)
371	        desc->irq_data.chip->irq_eoi();
372			</programlisting>
373			</para>
374	   	    </sect3>
375		    <sect3 id="EOI_Edge_IRQ_flow_handler">
376		 	<title>EOI Edge IRQ flow handler</title>
377			<para>
378			handle_edge_eoi_irq provides an abnomination of the edge
379			handler which is solely used to tame a badly wreckaged
380			irq controller on powerpc/cell.
381			</para>
382	   	    </sect3>
383		    <sect3 id="BAD_IRQ_flow_handler">
384		 	<title>Bad IRQ flow handler</title>
385			<para>
386			handle_bad_irq is used for spurious interrupts which
387			have no real handler assigned..
388			</para>
389	   	    </sect3>
390		</sect2>
391		<sect2 id="Quirks_and_optimizations">
392		<title>Quirks and optimizations</title>
393		<para>
394		The generic functions are intended for 'clean' architectures and chips,
395		which have no platform-specific IRQ handling quirks. If an architecture
396		needs to implement quirks on the 'flow' level then it can do so by
397		overriding the high-level irq-flow handler.
398		</para>
399		</sect2>
400		<sect2 id="Delayed_interrupt_disable">
401		<title>Delayed interrupt disable</title>
402		<para>
403		This per interrupt selectable feature, which was introduced by Russell
404		King in the ARM interrupt implementation, does not mask an interrupt
405		at the hardware level when disable_irq() is called. The interrupt is
406		kept enabled and is masked in the flow handler when an interrupt event
407		happens. This prevents losing edge interrupts on hardware which does
408		not store an edge interrupt event while the interrupt is disabled at
409		the hardware level. When an interrupt arrives while the IRQ_DISABLED
410		flag is set, then the interrupt is masked at the hardware level and
411		the IRQ_PENDING bit is set. When the interrupt is re-enabled by
412		enable_irq() the pending bit is checked and if it is set, the
413		interrupt is resent either via hardware or by a software resend
414		mechanism. (It's necessary to enable CONFIG_HARDIRQS_SW_RESEND when
415		you want to use the delayed interrupt disable feature and your
416		hardware is not capable of retriggering	an interrupt.)
417		The delayed interrupt disable is not configurable.
418		</para>
419		</sect2>
420	    </sect1>
421	    <sect1 id="Chiplevel_hardware_encapsulation">
422		<title>Chip-level hardware encapsulation</title>
423		<para>
424		The chip-level hardware descriptor structure irq_chip
425		contains all the direct chip relevant functions, which
426		can be utilized by the irq flow implementations.
427		  <itemizedlist>
428		  <listitem><para>irq_ack()</para></listitem>
429		  <listitem><para>irq_mask_ack() - Optional, recommended for performance</para></listitem>
430		  <listitem><para>irq_mask()</para></listitem>
431		  <listitem><para>irq_unmask()</para></listitem>
432		  <listitem><para>irq_eoi() - Optional, required for EOI flow handlers</para></listitem>
433		  <listitem><para>irq_retrigger() - Optional</para></listitem>
434		  <listitem><para>irq_set_type() - Optional</para></listitem>
435		  <listitem><para>irq_set_wake() - Optional</para></listitem>
436		  </itemizedlist>
437		These primitives are strictly intended to mean what they say: ack means
438		ACK, masking means masking of an IRQ line, etc. It is up to the flow
439		handler(s) to use these basic units of low-level functionality.
440		</para>
441	    </sect1>
442	  </chapter>
443	
444	  <chapter id="doirq">
445	     <title>__do_IRQ entry point</title>
446	     <para>
447		The original implementation __do_IRQ() was an alternative entry
448		point for all types of interrupts. It no longer exists.
449	     </para>
450	     <para>
451		This handler turned out to be not suitable for all
452		interrupt hardware and was therefore reimplemented with split
453		functionality for edge/level/simple/percpu interrupts. This is not
454		only a functional optimization. It also shortens code paths for
455		interrupts.
456	      </para>
457	  </chapter>
458	
459	  <chapter id="locking">
460	     <title>Locking on SMP</title>
461	     <para>
462		The locking of chip registers is up to the architecture that
463		defines the chip primitives. The per-irq structure is
464		protected via desc->lock, by the generic layer.
465	     </para>
466	  </chapter>
467	
468	  <chapter id="genericchip">
469	     <title>Generic interrupt chip</title>
470	     <para>
471	       To avoid copies of identical implementations of IRQ chips the
472	       core provides a configurable generic interrupt chip
473	       implementation. Developers should check carefully whether the
474	       generic chip fits their needs before implementing the same
475	       functionality slightly differently themselves.
476	     </para>
477	!Ekernel/irq/generic-chip.c
478	  </chapter>
479	
480	  <chapter id="structs">
481	     <title>Structures</title>
482	     <para>
483	     This chapter contains the autogenerated documentation of the structures which are
484	     used in the generic IRQ layer.
485	     </para>
486	!Iinclude/linux/irq.h
487	!Iinclude/linux/interrupt.h
488	  </chapter>
489	
490	  <chapter id="pubfunctions">
491	     <title>Public Functions Provided</title>
492	     <para>
493	     This chapter contains the autogenerated documentation of the kernel API functions
494	      which are exported.
495	     </para>
496	!Ekernel/irq/manage.c
497	!Ekernel/irq/chip.c
498	  </chapter>
499	
500	  <chapter id="intfunctions">
501	     <title>Internal Functions Provided</title>
502	     <para>
503	     This chapter contains the autogenerated documentation of the internal functions.
504	     </para>
505	!Ikernel/irq/irqdesc.c
506	!Ikernel/irq/handle.c
507	!Ikernel/irq/chip.c
508	  </chapter>
509	
510	  <chapter id="credits">
511	     <title>Credits</title>
512		<para>
513			The following people have contributed to this document:
514			<orderedlist>
515				<listitem><para>Thomas Gleixner<email>tglx@linutronix.de</email></para></listitem>
516				<listitem><para>Ingo Molnar<email>mingo@elte.hu</email></para></listitem>
517			</orderedlist>
518		</para>
519	  </chapter>
520	</book>
Hide Line Numbers


About Kernel Documentation Linux Kernel Contact Linux Resources Linux Blog