Documentation / devicetree / bindings / leds / leds-bcm6328.txt


Based on kernel version 5.16. Page generated on 2022-01-10 18:31 EST.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
LEDs connected to Broadcom BCM6328 controller

This controller is present on BCM6318, BCM6328, BCM6362 and BCM63268.
In these SoCs it's possible to control LEDs both as GPIOs or by hardware.
However, on some devices there are Serial LEDs (LEDs connected to a 74x164
controller), which can either be controlled by software (exporting the 74x164
as spi-gpio. See Documentation/devicetree/bindings/gpio/fairchild,74hc595.yaml),
or by hardware using this driver.
Some of these Serial LEDs are hardware controlled (e.g. ethernet LEDs) and
exporting the 74x164 as spi-gpio prevents those LEDs to be hardware
controlled, so the only chance to keep them working is by using this driver.

BCM6328 LED controller has a HWDIS register, which controls whether a LED
should be controlled by a hardware signal instead of the MODE register value,
with 0 meaning hardware control enabled and 1 hardware control disabled. This
is usually 1:1 for hardware to LED signals, but through the activity/link
registers you have some limited control over rerouting the LEDs (as
explained later in brcm,link-signal-sources). Even if a LED is hardware
controlled you are still able to make it blink or light it up if it isn't,
but you can't turn it off if the hardware decides to light it up. For this
reason, hardware controlled LEDs aren't registered as LED class devices.

Required properties:
  - compatible : should be "brcm,bcm6328-leds".
  - #address-cells : must be 1.
  - #size-cells : must be 0.
  - reg : BCM6328 LED controller address and size.

Optional properties:
  - brcm,serial-leds : Boolean, enables Serial LEDs.
    Default : false
  - brcm,serial-mux : Boolean, enables Serial LEDs multiplexing.
    Default : false
  - brcm,serial-clk-low : Boolean, makes clock signal active low.
    Default : false
  - brcm,serial-dat-low : Boolean, makes data signal active low.
    Default : false
  - brcm,serial-shift-inv : Boolean, inverts Serial LEDs shift direction.
    Default : false

Each LED is represented as a sub-node of the brcm,bcm6328-leds device.

LED sub-node required properties:
  - reg : LED pin number (only LEDs 0 to 23 are valid).

LED sub-node optional properties:
  a) Optional properties for sub-nodes related to software controlled LEDs:
    - label : see Documentation/devicetree/bindings/leds/common.txt
    - active-low : Boolean, makes LED active low.
      Default : false
    - default-state : see
      Documentation/devicetree/bindings/leds/common.txt
    - linux,default-trigger : see
      Documentation/devicetree/bindings/leds/common.txt

  b) Optional properties for sub-nodes related to hardware controlled LEDs:
    - brcm,hardware-controlled : Boolean, makes this LED hardware controlled.
      Default : false
    - brcm,link-signal-sources : An array of hardware link
      signal sources. Up to four link hardware signals can get muxed into
      these LEDs. Only valid for LEDs 0 to 7, where LED signals 0 to 3 may
      be muxed to LEDs 0 to 3, and signals 4 to 7 may be muxed to LEDs
      4 to 7. A signal can be muxed to more than one LED, and one LED can
      have more than one source signal.
    - brcm,activity-signal-sources : An array of hardware activity
      signal sources. Up to four activity hardware signals can get muxed into
      these LEDs. Only valid for LEDs 0 to 7, where LED signals 0 to 3 may
      be muxed to LEDs 0 to 3, and signals 4 to 7 may be muxed to LEDs
      4 to 7. A signal can be muxed to more than one LED, and one LED can
      have more than one source signal.

Examples:
Scenario 1 : BCM6328 with 4 EPHY LEDs
	leds0: led-controller@10000800 {
		compatible = "brcm,bcm6328-leds";
		#address-cells = <1>;
		#size-cells = <0>;
		reg = <0x10000800 0x24>;

		alarm_red@2 {
			reg = <2>;
			active-low;
			label = "red:alarm";
		};
		inet_green@3 {
			reg = <3>;
			active-low;
			label = "green:inet";
		};
		power_green@4 {
			reg = <4>;
			active-low;
			label = "green:power";
			default-state = "on";
		};
		ephy0_spd@17 {
			reg = <17>;
			brcm,hardware-controlled;
		};
		ephy1_spd@18 {
			reg = <18>;
			brcm,hardware-controlled;
		};
		ephy2_spd@19 {
			reg = <19>;
			brcm,hardware-controlled;
		};
		ephy3_spd@20 {
			reg = <20>;
			brcm,hardware-controlled;
		};
	};

Scenario 2 : BCM63268 with Serial/GPHY0 LEDs
	leds0: led-controller@10001900 {
		compatible = "brcm,bcm6328-leds";
		#address-cells = <1>;
		#size-cells = <0>;
		reg = <0x10001900 0x24>;
		brcm,serial-leds;
		brcm,serial-dat-low;
		brcm,serial-shift-inv;

		gphy0_spd0@0 {
			reg = <0>;
			brcm,hardware-controlled;
			brcm,link-signal-sources = <0>;
		};
		gphy0_spd1@1 {
			reg = <1>;
			brcm,hardware-controlled;
			brcm,link-signal-sources = <1>;
		};
		inet_red@2 {
			reg = <2>;
			active-low;
			label = "red:inet";
		};
		dsl_green@3 {
			reg = <3>;
			active-low;
			label = "green:dsl";
		};
		usb_green@4 {
			reg = <4>;
			active-low;
			label = "green:usb";
		};
		wps_green@7 {
			reg = <7>;
			active-low;
			label = "green:wps";
		};
		inet_green@8 {
			reg = <8>;
			active-low;
			label = "green:inet";
		};
		ephy0_act@9 {
			reg = <9>;
			brcm,hardware-controlled;
		};
		ephy1_act@10 {
			reg = <10>;
			brcm,hardware-controlled;
		};
		ephy2_act@11 {
			reg = <11>;
			brcm,hardware-controlled;
		};
		gphy0_act@12 {
			reg = <12>;
			brcm,hardware-controlled;
		};
		ephy0_spd@13 {
			reg = <13>;
			brcm,hardware-controlled;
		};
		ephy1_spd@14 {
			reg = <14>;
			brcm,hardware-controlled;
		};
		ephy2_spd@15 {
			reg = <15>;
			brcm,hardware-controlled;
		};
		power_green@20 {
			reg = <20>;
			active-low;
			label = "green:power";
			default-state = "on";
		};
	};

Scenario 3 : BCM6362 with 1 LED for each EPHY
	leds0: led-controller@10001900 {
		compatible = "brcm,bcm6328-leds";
		#address-cells = <1>;
		#size-cells = <0>;
		reg = <0x10001900 0x24>;

		usb@0 {
			reg = <0>;
			brcm,hardware-controlled;
			brcm,link-signal-sources = <0>;
			brcm,activity-signal-sources = <0>;
			/* USB link/activity routed to USB LED */
		};
		inet@1 {
			reg = <1>;
			brcm,hardware-controlled;
			brcm,activity-signal-sources = <1>;
			/* INET activity routed to INET LED */
		};
		ephy0@4 {
			reg = <4>;
			brcm,hardware-controlled;
			brcm,link-signal-sources = <4>;
			/* EPHY0 link routed to EPHY0 LED */
		};
		ephy1@5 {
			reg = <5>;
			brcm,hardware-controlled;
			brcm,link-signal-sources = <5>;
			/* EPHY1 link routed to EPHY1 LED */
		};
		ephy2@6 {
			reg = <6>;
			brcm,hardware-controlled;
			brcm,link-signal-sources = <6>;
			/* EPHY2 link routed to EPHY2 LED */
		};
		ephy3@7 {
			reg = <7>;
			brcm,hardware-controlled;
			brcm,link-signal-sources = <7>;
			/* EPHY3 link routed to EPHY3 LED */
		};
		power_green@20 {
			reg = <20>;
			active-low;
			label = "green:power";
			default-state = "on";
		};
	};

Scenario 4 : BCM6362 with 1 LED for all EPHYs
	leds0: led-controller@10001900 {
		compatible = "brcm,bcm6328-leds";
		#address-cells = <1>;
		#size-cells = <0>;
		reg = <0x10001900 0x24>;

		usb@0 {
			reg = <0>;
			brcm,hardware-controlled;
			brcm,link-signal-sources = <0 1>;
			brcm,activity-signal-sources = <0 1>;
			/* USB/INET link/activity routed to USB LED */
		};
		ephy@4 {
			reg = <4>;
			brcm,hardware-controlled;
			brcm,link-signal-sources = <4 5 6 7>;
			/* EPHY0/1/2/3 link routed to EPHY0 LED */
		};
		power_green@20 {
			reg = <20>;
			active-low;
			label = "green:power";
			default-state = "on";
		};
	};

Scenario 5 : BCM6362 with EPHY LEDs swapped
	leds0: led-controller@10001900 {
		compatible = "brcm,bcm6328-leds";
		#address-cells = <1>;
		#size-cells = <0>;
		reg = <0x10001900 0x24>;

		usb@0 {
			reg = <0>;
			brcm,hardware-controlled;
			brcm,link-signal-sources = <0>;
			brcm,activity-signal-sources = <0 1>;
			/* USB link/act and INET act routed to USB LED */
		};
		ephy0@4 {
			reg = <4>;
			brcm,hardware-controlled;
			brcm,link-signal-sources = <7>;
			/* EPHY3 link routed to EPHY0 LED */
		};
		ephy1@5 {
			reg = <5>;
			brcm,hardware-controlled;
			brcm,link-signal-sources = <6>;
			/* EPHY2 link routed to EPHY1 LED */
		};
		ephy2@6 {
			reg = <6>;
			brcm,hardware-controlled;
			brcm,link-signal-sources = <5>;
			/* EPHY1 link routed to EPHY2 LED */
		};
		ephy3@7 {
			reg = <7>;
			brcm,hardware-controlled;
			brcm,link-signal-sources = <4>;
			/* EPHY0 link routed to EPHY3 LED */
		};
		power_green@20 {
			reg = <20>;
			active-low;
			label = "green:power";
			default-state = "on";
		};
	};