Documentation / devicetree / bindings / numa.txt


Based on kernel version 6.8. Page generated on 2024-03-11 21:26 EST.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
==============================================================================
NUMA binding description.
==============================================================================

==============================================================================
1 - Introduction
==============================================================================

Systems employing a Non Uniform Memory Access (NUMA) architecture contain
collections of hardware resources including processors, memory, and I/O buses,
that comprise what is commonly known as a NUMA node.
Processor accesses to memory within the local NUMA node is generally faster
than processor accesses to memory outside of the local NUMA node.
DT defines interfaces that allow the platform to convey NUMA node
topology information to OS.

==============================================================================
2 - numa-node-id
==============================================================================

For the purpose of identification, each NUMA node is associated with a unique
token known as a node id. For the purpose of this binding
a node id is a 32-bit integer.

A device node is associated with a NUMA node by the presence of a
numa-node-id property which contains the node id of the device.

Example:
	/* numa node 0 */
	numa-node-id = <0>;

	/* numa node 1 */
	numa-node-id = <1>;

==============================================================================
3 - distance-map
==============================================================================

The optional device tree node distance-map describes the relative
distance (memory latency) between all numa nodes.

- compatible : Should at least contain "numa-distance-map-v1".

- distance-matrix
  This property defines a matrix to describe the relative distances
  between all numa nodes.
  It is represented as a list of node pairs and their relative distance.

  Note:
	1. Each entry represents distance from first node to second node.
	The distances are equal in either direction.
	2. The distance from a node to self (local distance) is represented
	with value 10 and all internode distance should be represented with
	a value greater than 10.
	3. distance-matrix should have entries in lexicographical ascending
	order of nodes.
	4. There must be only one device node distance-map which must
	reside in the root node.
	5. If the distance-map node is not present, a default
	distance-matrix is used.

Example:
	4 nodes connected in mesh/ring topology as below,

		0_______20______1
		|               |
		|               |
		20             20
		|               |
		|               |
		|_______________|
		3       20      2

	if relative distance for each hop is 20,
	then internode distance would be,
	      0 -> 1 = 20
	      1 -> 2 = 20
	      2 -> 3 = 20
	      3 -> 0 = 20
	      0 -> 2 = 40
	      1 -> 3 = 40

     and dt presentation for this distance matrix is,

		distance-map {
			 compatible = "numa-distance-map-v1";
			 distance-matrix = <0 0  10>,
					   <0 1  20>,
					   <0 2  40>,
					   <0 3  20>,
					   <1 0  20>,
					   <1 1  10>,
					   <1 2  20>,
					   <1 3  40>,
					   <2 0  40>,
					   <2 1  20>,
					   <2 2  10>,
					   <2 3  20>,
					   <3 0  20>,
					   <3 1  40>,
					   <3 2  20>,
					   <3 3  10>;
		};

==============================================================================
4 - Empty memory nodes
==============================================================================

Empty memory nodes, which no memory resides in, are allowed. There are no
device nodes for these empty memory nodes. However, the NUMA node IDs and
distance maps are still valid and memory may be added into them through
hotplug afterwards.

Example:

	memory@0 {
		device_type = "memory";
		reg = <0x0 0x0 0x0 0x80000000>;
		numa-node-id = <0>;
	};

	memory@80000000 {
		device_type = "memory";
		reg = <0x0 0x80000000 0x0 0x80000000>;
		numa-node-id = <1>;
	};

	/* Empty memory node 2 and 3 */
	distance-map {
		compatible = "numa-distance-map-v1";
		distance-matrix = <0 0  10>,
				  <0 1  20>,
				  <0 2  40>,
				  <0 3  20>,
				  <1 0  20>,
				  <1 1  10>,
				  <1 2  20>,
				  <1 3  40>,
				  <2 0  40>,
				  <2 1  20>,
				  <2 2  10>,
				  <2 3  20>,
				  <3 0  20>,
				  <3 1  40>,
				  <3 2  20>,
				  <3 3  10>;
	};

==============================================================================
5 - Example dts
==============================================================================

Dual socket system consists of 2 boards connected through ccn bus and
each board having one socket/soc of 8 cpus, memory and pci bus.

	memory@c00000 {
		device_type = "memory";
		reg = <0x0 0xc00000 0x0 0x80000000>;
		/* node 0 */
		numa-node-id = <0>;
	};

	memory@10000000000 {
		device_type = "memory";
		reg = <0x100 0x0 0x0 0x80000000>;
		/* node 1 */
		numa-node-id = <1>;
	};

	cpus {
		#address-cells = <2>;
		#size-cells = <0>;

		cpu@0 {
			device_type = "cpu";
			compatible =  "arm,armv8";
			reg = <0x0 0x0>;
			enable-method = "psci";
			/* node 0 */
			numa-node-id = <0>;
		};
		cpu@1 {
			device_type = "cpu";
			compatible =  "arm,armv8";
			reg = <0x0 0x1>;
			enable-method = "psci";
			numa-node-id = <0>;
		};
		cpu@2 {
			device_type = "cpu";
			compatible =  "arm,armv8";
			reg = <0x0 0x2>;
			enable-method = "psci";
			numa-node-id = <0>;
		};
		cpu@3 {
			device_type = "cpu";
			compatible =  "arm,armv8";
			reg = <0x0 0x3>;
			enable-method = "psci";
			numa-node-id = <0>;
		};
		cpu@4 {
			device_type = "cpu";
			compatible =  "arm,armv8";
			reg = <0x0 0x4>;
			enable-method = "psci";
			numa-node-id = <0>;
		};
		cpu@5 {
			device_type = "cpu";
			compatible =  "arm,armv8";
			reg = <0x0 0x5>;
			enable-method = "psci";
			numa-node-id = <0>;
		};
		cpu@6 {
			device_type = "cpu";
			compatible =  "arm,armv8";
			reg = <0x0 0x6>;
			enable-method = "psci";
			numa-node-id = <0>;
		};
		cpu@7 {
			device_type = "cpu";
			compatible =  "arm,armv8";
			reg = <0x0 0x7>;
			enable-method = "psci";
			numa-node-id = <0>;
		};
		cpu@8 {
			device_type = "cpu";
			compatible =  "arm,armv8";
			reg = <0x0 0x8>;
			enable-method = "psci";
			/* node 1 */
			numa-node-id = <1>;
		};
		cpu@9 {
			device_type = "cpu";
			compatible =  "arm,armv8";
			reg = <0x0 0x9>;
			enable-method = "psci";
			numa-node-id = <1>;
		};
		cpu@a {
			device_type = "cpu";
			compatible =  "arm,armv8";
			reg = <0x0 0xa>;
			enable-method = "psci";
			numa-node-id = <1>;
		};
		cpu@b {
			device_type = "cpu";
			compatible =  "arm,armv8";
			reg = <0x0 0xb>;
			enable-method = "psci";
			numa-node-id = <1>;
		};
		cpu@c {
			device_type = "cpu";
			compatible =  "arm,armv8";
			reg = <0x0 0xc>;
			enable-method = "psci";
			numa-node-id = <1>;
		};
		cpu@d {
			device_type = "cpu";
			compatible =  "arm,armv8";
			reg = <0x0 0xd>;
			enable-method = "psci";
			numa-node-id = <1>;
		};
		cpu@e {
			device_type = "cpu";
			compatible =  "arm,armv8";
			reg = <0x0 0xe>;
			enable-method = "psci";
			numa-node-id = <1>;
		};
		cpu@f {
			device_type = "cpu";
			compatible =  "arm,armv8";
			reg = <0x0 0xf>;
			enable-method = "psci";
			numa-node-id = <1>;
		};
	};

	pcie0: pcie0@848000000000 {
		compatible = "arm,armv8";
		device_type = "pci";
		bus-range = <0 255>;
		#size-cells = <2>;
		#address-cells = <3>;
		reg = <0x8480 0x00000000 0 0x10000000>;  /* Configuration space */
		ranges = <0x03000000 0x8010 0x00000000 0x8010 0x00000000 0x70 0x00000000>;
		/* node 0 */
		numa-node-id = <0>;
        };

	pcie1: pcie1@948000000000 {
		compatible = "arm,armv8";
		device_type = "pci";
		bus-range = <0 255>;
		#size-cells = <2>;
		#address-cells = <3>;
		reg = <0x9480 0x00000000 0 0x10000000>;  /* Configuration space */
		ranges = <0x03000000 0x9010 0x00000000 0x9010 0x00000000 0x70 0x00000000>;
		/* node 1 */
		numa-node-id = <1>;
        };

	distance-map {
		compatible = "numa-distance-map-v1";
		distance-matrix = <0 0 10>,
				  <0 1 20>,
				  <1 1 10>;
	};