Documentation / admin-guide / nfs / nfsroot.rst

Based on kernel version 5.9. Page generated on 2020-10-14 09:35 EST.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
Mounting the root filesystem via NFS (nfsroot)

	Written 1996 by Gero Kuhlmann <>

	Updated 1997 by Martin Mares <>

	Updated 2006 by Nico Schottelius <>

	Updated 2006 by Horms <>

	Updated 2018 by Chris Novakovic <>

In order to use a diskless system, such as an X-terminal or printer server for
example, it is necessary for the root filesystem to be present on a non-disk
device. This may be an initramfs (see
Documentation/filesystems/ramfs-rootfs-initramfs.rst), a ramdisk (see
Documentation/admin-guide/initrd.rst) or a filesystem mounted via NFS. The
following text describes on how to use NFS for the root filesystem. For the rest
of this text 'client' means the diskless system, and 'server' means the NFS

Enabling nfsroot capabilities

In order to use nfsroot, NFS client support needs to be selected as
built-in during configuration. Once this has been selected, the nfsroot
option will become available, which should also be selected.

In the networking options, kernel level autoconfiguration can be selected,
along with the types of autoconfiguration to support. Selecting all of
DHCP, BOOTP and RARP is safe.

Kernel command line

When the kernel has been loaded by a boot loader (see below) it needs to be
told what root fs device to use. And in the case of nfsroot, where to find
both the server and the name of the directory on the server to mount as root.
This can be established using the following kernel command line parameters:

  This is necessary to enable the pseudo-NFS-device. Note that it's not a
  real device but just a synonym to tell the kernel to use NFS instead of
  a real device.

  If the `nfsroot' parameter is NOT given on the command line,
  the default ``"/tftpboot/%s"`` will be used.

  <server-ip>	Specifies the IP address of the NFS server.
		The default address is determined by the ip parameter
		(see below). This parameter allows the use of different
		servers for IP autoconfiguration and NFS.

  <root-dir>	Name of the directory on the server to mount as root.
		If there is a "%s" token in the string, it will be
		replaced by the ASCII-representation of the client's
		IP address.

  <nfs-options>	Standard NFS options. All options are separated by commas.
		The following defaults are used::

			port		= as given by server portmap daemon
			rsize		= 4096
			wsize		= 4096
			timeo		= 7
			retrans		= 3
			acregmin	= 3
			acregmax	= 60
			acdirmin	= 30
			acdirmax	= 60
			flags		= hard, nointr, noposix, cto, ac

  This parameter tells the kernel how to configure IP addresses of devices
  and also how to set up the IP routing table. It was originally called
  nfsaddrs, but now the boot-time IP configuration works independently of
  NFS, so it was renamed to ip and the old name remained as an alias for
  compatibility reasons.

  If this parameter is missing from the kernel command line, all fields are
  assumed to be empty, and the defaults mentioned below apply. In general
  this means that the kernel tries to configure everything using

  The <autoconf> parameter can appear alone as the value to the ip
  parameter (without all the ':' characters before).  If the value is
  "ip=off" or "ip=none", no autoconfiguration will take place, otherwise
  autoconfiguration will take place.  The most common way to use this
  is "ip=dhcp".

  <client-ip>	IP address of the client.
  		Default:  Determined using autoconfiguration.

  <server-ip>	IP address of the NFS server.
		If RARP is used to determine
		the client address and this parameter is NOT empty only
		replies from the specified server are accepted.

		Only required for NFS root. That is autoconfiguration
		will not be triggered if it is missing and NFS root is not
		in operation.

		Value is exported to /proc/net/pnp with the prefix "bootserver "
		(see below).

		Default: Determined using autoconfiguration.
		The address of the autoconfiguration server is used.

  <gw-ip>	IP address of a gateway if the server is on a different subnet.
		Default: Determined using autoconfiguration.

  <netmask>	Netmask for local network interface.
		If unspecified the netmask is derived from the client IP address
		assuming classful addressing.

		Default:  Determined using autoconfiguration.

  <hostname>	Name of the client.
		If a '.' character is present, anything
		before the first '.' is used as the client's hostname, and anything
		after it is used as its NIS domain name. May be supplied by
		autoconfiguration, but its absence will not trigger autoconfiguration.
		If specified and DHCP is used, the user-provided hostname (and NIS
		domain name, if present) will be carried in the DHCP request; this
		may cause a DNS record to be created or updated for the client.

  		Default: Client IP address is used in ASCII notation.

  <device>	Name of network device to use.
		Default: If the host only has one device, it is used.
		Otherwise the device is determined using
		autoconfiguration. This is done by sending
		autoconfiguration requests out of all devices,
		and using the device that received the first reply.

  <autoconf>	Method to use for autoconfiguration.
		In the case of options
		which specify multiple autoconfiguration protocols,
		requests are sent using all protocols, and the first one
		to reply is used.

		Only autoconfiguration protocols that have been compiled
		into the kernel will be used, regardless of the value of
		this option::

                  off or none: don't use autoconfiguration
				(do static IP assignment instead)
		  on or any:   use any protocol available in the kernel
		  dhcp:        use DHCP
		  bootp:       use BOOTP
		  rarp:        use RARP
		  both:        use both BOOTP and RARP but not DHCP
		               (old option kept for backwards compatibility)

		if dhcp is used, the client identifier can be used by following
		format "ip=dhcp,client-id-type,client-id-value"

                Default: any

  <dns0-ip>	IP address of primary nameserver.
		Value is exported to /proc/net/pnp with the prefix "nameserver "
		(see below).

		Default: None if not using autoconfiguration; determined
		automatically if using autoconfiguration.

  <dns1-ip>	IP address of secondary nameserver.
		See <dns0-ip>.

  <ntp0-ip>	IP address of a Network Time Protocol (NTP) server.
		Value is exported to /proc/net/ipconfig/ntp_servers, but is
		otherwise unused (see below).

		Default: None if not using autoconfiguration; determined
		automatically if using autoconfiguration.

  After configuration (whether manual or automatic) is complete, two files
  are created in the following format; lines are omitted if their respective
  value is empty following configuration:

  - /proc/net/pnp:

	#PROTO: <DHCP|BOOTP|RARP|MANUAL>	(depending on configuration method)
	domain <dns-domain>			(if autoconfigured, the DNS domain)
	nameserver <dns0-ip>			(primary name server IP)
	nameserver <dns1-ip>			(secondary name server IP)
	nameserver <dns2-ip>			(tertiary name server IP)
	bootserver <server-ip>			(NFS server IP)

  - /proc/net/ipconfig/ntp_servers:

	<ntp0-ip>				(NTP server IP)
	<ntp1-ip>				(NTP server IP)
	<ntp2-ip>				(NTP server IP)

  <dns-domain> and <dns2-ip> (in /proc/net/pnp) and <ntp1-ip> and <ntp2-ip>
  (in /proc/net/ipconfig/ntp_servers) are requested during autoconfiguration;
  they cannot be specified as part of the "ip=" kernel command line parameter.

  Because the "domain" and "nameserver" options are recognised by DNS
  resolvers, /etc/resolv.conf is often linked to /proc/net/pnp on systems
  that use an NFS root filesystem.

  Note that the kernel will not synchronise the system time with any NTP
  servers it discovers; this is the responsibility of a user space process
  (e.g. an initrd/initramfs script that passes the IP addresses listed in
  /proc/net/ipconfig/ntp_servers to an NTP client before mounting the real
  root filesystem if it is on NFS).

  This parameter enables debugging messages to appear in the kernel
  log at boot time so that administrators can verify that the correct
  NFS mount options, server address, and root path are passed to the
  NFS client.

rdinit=<executable file>
  To specify which file contains the program that starts system
  initialization, administrators can use this command line parameter.
  The default value of this parameter is "/init".  If the specified
  file exists and the kernel can execute it, root filesystem related
  kernel command line parameters, including 'nfsroot=', are ignored.

  A description of the process of mounting the root file system can be
  found in Documentation/driver-api/early-userspace/early_userspace_support.rst

Boot Loader

To get the kernel into memory different approaches can be used.
They depend on various facilities being available:

- Booting from a floppy using syslinux

	When building kernels, an easy way to create a boot floppy that uses
	syslinux is to use the zdisk or bzdisk make targets which use zimage
      	and bzimage images respectively. Both targets accept the
     	FDARGS parameter which can be used to set the kernel command line.


	   make bzdisk FDARGS="root=/dev/nfs"

   	Note that the user running this command will need to have
     	access to the floppy drive device, /dev/fd0

     	For more information on syslinux, including how to create bootdisks
     	for prebuilt kernels, see

	.. note::
		Previously it was possible to write a kernel directly to
		a floppy using dd, configure the boot device using rdev, and
		boot using the resulting floppy. Linux no longer supports this
		method of booting.

- Booting from a cdrom using isolinux

     	When building kernels, an easy way to create a bootable cdrom that
     	uses isolinux is to use the isoimage target which uses a bzimage
     	image. Like zdisk and bzdisk, this target accepts the FDARGS
     	parameter which can be used to set the kernel command line.


	  make isoimage FDARGS="root=/dev/nfs"

     	The resulting iso image will be arch/<ARCH>/boot/image.iso
     	This can be written to a cdrom using a variety of tools including


	  cdrecord dev=ATAPI:1,0,0 arch/x86/boot/image.iso

     	For more information on isolinux, including how to create bootdisks
     	for prebuilt kernels, see

- Using LILO

	When using LILO all the necessary command line parameters may be
	specified using the 'append=' directive in the LILO configuration

	However, to use the 'root=' directive you also need to create
	a dummy root device, which may be removed after LILO is run.


	  mknod /dev/boot255 c 0 255

	For information on configuring LILO, please refer to its documentation.

- Using GRUB

	When using GRUB, kernel parameter are simply appended after the kernel
	specification: kernel <kernel> <parameters>

- Using loadlin

	loadlin may be used to boot Linux from a DOS command prompt without
	requiring a local hard disk to mount as root. This has not been
	thoroughly tested by the authors of this document, but in general
	it should be possible configure the kernel command line similarly
	to the configuration of LILO.

	Please refer to the loadlin documentation for further information.

- Using a boot ROM

	This is probably the most elegant way of booting a diskless client.
	With a boot ROM the kernel is loaded using the TFTP protocol. The
	authors of this document are not aware of any no commercial boot
	ROMs that support booting Linux over the network. However, there
	are two free implementations of a boot ROM, netboot-nfs and
	etherboot, both of which are available on, and both
	of which contain everything you need to boot a diskless Linux client.

- Using pxelinux

	Pxelinux may be used to boot linux using the PXE boot loader
	which is present on many modern network cards.

	When using pxelinux, the kernel image is specified using
	"kernel <relative-path-below /tftpboot>". The nfsroot parameters
	are passed to the kernel by adding them to the "append" line.
	It is common to use serial console in conjunction with pxeliunx,
	see Documentation/admin-guide/serial-console.rst for more information.

	For more information on isolinux, including how to create bootdisks
	for prebuilt kernels, see


  The nfsroot code in the kernel and the RARP support have been written
  by Gero Kuhlmann <>.

  The rest of the IP layer autoconfiguration code has been written
  by Martin Mares <>.

  In order to write the initial version of nfsroot I would like to thank
  Jens-Uwe Mager <> for his help.