Documentation / media / uapi / v4l / buffer.rst


Based on kernel version 5.7.10. Page generated on 2020-07-23 22:17 EST.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
.. Permission is granted to copy, distribute and/or modify this
.. document under the terms of the GNU Free Documentation License,
.. Version 1.1 or any later version published by the Free Software
.. Foundation, with no Invariant Sections, no Front-Cover Texts
.. and no Back-Cover Texts. A copy of the license is included at
.. Documentation/media/uapi/fdl-appendix.rst.
..
.. TODO: replace it to GFDL-1.1-or-later WITH no-invariant-sections

.. _buffer:

*******
Buffers
*******

A buffer contains data exchanged by application and driver using one of
the Streaming I/O methods. In the multi-planar API, the data is held in
planes, while the buffer structure acts as a container for the planes.
Only pointers to buffers (planes) are exchanged, the data itself is not
copied. These pointers, together with meta-information like timestamps
or field parity, are stored in a struct :c:type:`v4l2_buffer`,
argument to the :ref:`VIDIOC_QUERYBUF`,
:ref:`VIDIOC_QBUF <VIDIOC_QBUF>` and
:ref:`VIDIOC_DQBUF <VIDIOC_QBUF>` ioctl. In the multi-planar API,
some plane-specific members of struct :c:type:`v4l2_buffer`,
such as pointers and sizes for each plane, are stored in struct
struct :c:type:`v4l2_plane` instead. In that case, struct
struct :c:type:`v4l2_buffer` contains an array of plane structures.

Dequeued video buffers come with timestamps. The driver decides at which
part of the frame and with which clock the timestamp is taken. Please
see flags in the masks ``V4L2_BUF_FLAG_TIMESTAMP_MASK`` and
``V4L2_BUF_FLAG_TSTAMP_SRC_MASK`` in :ref:`buffer-flags`. These flags
are always valid and constant across all buffers during the whole video
stream. Changes in these flags may take place as a side effect of
:ref:`VIDIOC_S_INPUT <VIDIOC_G_INPUT>` or
:ref:`VIDIOC_S_OUTPUT <VIDIOC_G_OUTPUT>` however. The
``V4L2_BUF_FLAG_TIMESTAMP_COPY`` timestamp type which is used by e.g. on
mem-to-mem devices is an exception to the rule: the timestamp source
flags are copied from the OUTPUT video buffer to the CAPTURE video
buffer.


Interactions between formats, controls and buffers
==================================================

V4L2 exposes parameters that influence the buffer size, or the way data is
laid out in the buffer. Those parameters are exposed through both formats and
controls. One example of such a control is the ``V4L2_CID_ROTATE`` control
that modifies the direction in which pixels are stored in the buffer, as well
as the buffer size when the selected format includes padding at the end of
lines.

The set of information needed to interpret the content of a buffer (e.g. the
pixel format, the line stride, the tiling orientation or the rotation) is
collectively referred to in the rest of this section as the buffer layout.

Controls that can modify the buffer layout shall set the
``V4L2_CTRL_FLAG_MODIFY_LAYOUT`` flag.

Modifying formats or controls that influence the buffer size or layout require
the stream to be stopped. Any attempt at such a modification while the stream
is active shall cause the ioctl setting the format or the control to return
the ``EBUSY`` error code. In that case drivers shall also set the
``V4L2_CTRL_FLAG_GRABBED`` flag when calling
:c:func:`VIDIOC_QUERYCTRL` or :c:func:`VIDIOC_QUERY_EXT_CTRL` for such a
control while the stream is active.

.. note::

   The :c:func:`VIDIOC_S_SELECTION` ioctl can, depending on the hardware (for
   instance if the device doesn't include a scaler), modify the format in
   addition to the selection rectangle. Similarly, the
   :c:func:`VIDIOC_S_INPUT`, :c:func:`VIDIOC_S_OUTPUT`, :c:func:`VIDIOC_S_STD`
   and :c:func:`VIDIOC_S_DV_TIMINGS` ioctls can also modify the format and
   selection rectangles. When those ioctls result in a buffer size or layout
   change, drivers shall handle that condition as they would handle it in the
   :c:func:`VIDIOC_S_FMT` ioctl in all cases described in this section.

Controls that only influence the buffer layout can be modified at any time
when the stream is stopped. As they don't influence the buffer size, no
special handling is needed to synchronize those controls with buffer
allocation and the ``V4L2_CTRL_FLAG_GRABBED`` flag is cleared once the
stream is stopped.

Formats and controls that influence the buffer size interact with buffer
allocation. The simplest way to handle this is for drivers to always require
buffers to be reallocated in order to change those formats or controls. In
that case, to perform such changes, userspace applications shall first stop
the video stream with the :c:func:`VIDIOC_STREAMOFF` ioctl if it is running
and free all buffers with the :c:func:`VIDIOC_REQBUFS` ioctl if they are
allocated. After freeing all buffers the ``V4L2_CTRL_FLAG_GRABBED`` flag
for controls is cleared. The format or controls can then be modified, and
buffers shall then be reallocated and the stream restarted. A typical ioctl
sequence is

 #. VIDIOC_STREAMOFF
 #. VIDIOC_REQBUFS(0)
 #. VIDIOC_S_EXT_CTRLS
 #. VIDIOC_S_FMT
 #. VIDIOC_REQBUFS(n)
 #. VIDIOC_QBUF
 #. VIDIOC_STREAMON

The second :c:func:`VIDIOC_REQBUFS` call will take the new format and control
value into account to compute the buffer size to allocate. Applications can
also retrieve the size by calling the :c:func:`VIDIOC_G_FMT` ioctl if needed.

.. note::

   The API doesn't mandate the above order for control (3.) and format (4.)
   changes. Format and controls can be set in a different order, or even
   interleaved, depending on the device and use case. For instance some
   controls might behave differently for different pixel formats, in which
   case the format might need to be set first.

When reallocation is required, any attempt to modify format or controls that
influences the buffer size while buffers are allocated shall cause the format
or control set ioctl to return the ``EBUSY`` error. Any attempt to queue a
buffer too small for the current format or controls shall cause the
:c:func:`VIDIOC_QBUF` ioctl to return a ``EINVAL`` error.

Buffer reallocation is an expensive operation. To avoid that cost, drivers can
(and are encouraged to) allow format or controls that influence the buffer
size to be changed with buffers allocated. In that case, a typical ioctl
sequence to modify format and controls is

 #. VIDIOC_STREAMOFF
 #. VIDIOC_S_EXT_CTRLS
 #. VIDIOC_S_FMT
 #. VIDIOC_QBUF
 #. VIDIOC_STREAMON

For this sequence to operate correctly, queued buffers need to be large enough
for the new format or controls. Drivers shall return a ``ENOSPC`` error in
response to format change (:c:func:`VIDIOC_S_FMT`) or control changes
(:c:func:`VIDIOC_S_CTRL` or :c:func:`VIDIOC_S_EXT_CTRLS`) if buffers too small
for the new format are currently queued. As a simplification, drivers are
allowed to return a ``EBUSY`` error from these ioctls if any buffer is
currently queued, without checking the queued buffers sizes.

Additionally, drivers shall return a ``EINVAL`` error from the
:c:func:`VIDIOC_QBUF` ioctl if the buffer being queued is too small for the
current format or controls. Together, these requirements ensure that queued
buffers will always be large enough for the configured format and controls.

Userspace applications can query the buffer size required for a given format
and controls by first setting the desired control values and then trying the
desired format. The :c:func:`VIDIOC_TRY_FMT` ioctl will return the required
buffer size.

 #. VIDIOC_S_EXT_CTRLS(x)
 #. VIDIOC_TRY_FMT()
 #. VIDIOC_S_EXT_CTRLS(y)
 #. VIDIOC_TRY_FMT()

The :c:func:`VIDIOC_CREATE_BUFS` ioctl can then be used to allocate buffers
based on the queried sizes (for instance by allocating a set of buffers large
enough for all the desired formats and controls, or by allocating separate set
of appropriately sized buffers for each use case).


.. c:type:: v4l2_buffer

struct v4l2_buffer
==================

.. tabularcolumns:: |p{2.8cm}|p{2.5cm}|p{1.6cm}|p{10.2cm}|

.. cssclass:: longtable

.. flat-table:: struct v4l2_buffer
    :header-rows:  0
    :stub-columns: 0
    :widths:       1 2 10

    * - __u32
      - ``index``
      - Number of the buffer, set by the application except when calling
	:ref:`VIDIOC_DQBUF <VIDIOC_QBUF>`, then it is set by the
	driver. This field can range from zero to the number of buffers
	allocated with the :ref:`VIDIOC_REQBUFS` ioctl
	(struct :c:type:`v4l2_requestbuffers`
	``count``), plus any buffers allocated with
	:ref:`VIDIOC_CREATE_BUFS` minus one.
    * - __u32
      - ``type``
      - Type of the buffer, same as struct
	:c:type:`v4l2_format` ``type`` or struct
	:c:type:`v4l2_requestbuffers` ``type``, set
	by the application. See :c:type:`v4l2_buf_type`
    * - __u32
      - ``bytesused``
      - The number of bytes occupied by the data in the buffer. It depends
	on the negotiated data format and may change with each buffer for
	compressed variable size data like JPEG images. Drivers must set
	this field when ``type`` refers to a capture stream, applications
	when it refers to an output stream. If the application sets this
	to 0 for an output stream, then ``bytesused`` will be set to the
	size of the buffer (see the ``length`` field of this struct) by
	the driver. For multiplanar formats this field is ignored and the
	``planes`` pointer is used instead.
    * - __u32
      - ``flags``
      - Flags set by the application or driver, see :ref:`buffer-flags`.
    * - __u32
      - ``field``
      - Indicates the field order of the image in the buffer, see
	:c:type:`v4l2_field`. This field is not used when the buffer
	contains VBI data. Drivers must set it when ``type`` refers to a
	capture stream, applications when it refers to an output stream.
    * - struct timeval
      - ``timestamp``
      - For capture streams this is time when the first data byte was
	captured, as returned by the :c:func:`clock_gettime()` function
	for the relevant clock id; see ``V4L2_BUF_FLAG_TIMESTAMP_*`` in
	:ref:`buffer-flags`. For output streams the driver stores the
	time at which the last data byte was actually sent out in the
	``timestamp`` field. This permits applications to monitor the
	drift between the video and system clock. For output streams that
	use ``V4L2_BUF_FLAG_TIMESTAMP_COPY`` the application has to fill
	in the timestamp which will be copied by the driver to the capture
	stream.
    * - struct :c:type:`v4l2_timecode`
      - ``timecode``
      - When the ``V4L2_BUF_FLAG_TIMECODE`` flag is set in ``flags``, this
	structure contains a frame timecode. In
	:c:type:`V4L2_FIELD_ALTERNATE <v4l2_field>` mode the top and
	bottom field contain the same timecode. Timecodes are intended to
	help video editing and are typically recorded on video tapes, but
	also embedded in compressed formats like MPEG. This field is
	independent of the ``timestamp`` and ``sequence`` fields.
    * - __u32
      - ``sequence``
      - Set by the driver, counting the frames (not fields!) in sequence.
	This field is set for both input and output devices.
    * - :cspan:`2`

	In :c:type:`V4L2_FIELD_ALTERNATE <v4l2_field>` mode the top and
	bottom field have the same sequence number. The count starts at
	zero and includes dropped or repeated frames. A dropped frame was
	received by an input device but could not be stored due to lack of
	free buffer space. A repeated frame was displayed again by an
	output device because the application did not pass new data in
	time.

	.. note::

	   This may count the frames received e.g. over USB, without
	   taking into account the frames dropped by the remote hardware due
	   to limited compression throughput or bus bandwidth. These devices
	   identify by not enumerating any video standards, see
	   :ref:`standard`.

    * - __u32
      - ``memory``
      - This field must be set by applications and/or drivers in
	accordance with the selected I/O method. See :c:type:`v4l2_memory`
    * - union {
      - ``m``
    * - __u32
      - ``offset``
      - For the single-planar API and when ``memory`` is
	``V4L2_MEMORY_MMAP`` this is the offset of the buffer from the
	start of the device memory. The value is returned by the driver
	and apart of serving as parameter to the
	:ref:`mmap() <func-mmap>` function not useful for applications.
	See :ref:`mmap` for details
    * - unsigned long
      - ``userptr``
      - For the single-planar API and when ``memory`` is
	``V4L2_MEMORY_USERPTR`` this is a pointer to the buffer (casted to
	unsigned long type) in virtual memory, set by the application. See
	:ref:`userp` for details.
    * - struct v4l2_plane
      - ``*planes``
      - When using the multi-planar API, contains a userspace pointer to
	an array of struct :c:type:`v4l2_plane`. The size of
	the array should be put in the ``length`` field of this
	struct :c:type:`v4l2_buffer` structure.
    * - int
      - ``fd``
      - For the single-plane API and when ``memory`` is
	``V4L2_MEMORY_DMABUF`` this is the file descriptor associated with
	a DMABUF buffer.
    * - }
      -
    * - __u32
      - ``length``
      - Size of the buffer (not the payload) in bytes for the
	single-planar API. This is set by the driver based on the calls to
	:ref:`VIDIOC_REQBUFS` and/or
	:ref:`VIDIOC_CREATE_BUFS`. For the
	multi-planar API the application sets this to the number of
	elements in the ``planes`` array. The driver will fill in the
	actual number of valid elements in that array.
    * - __u32
      - ``reserved2``
      - A place holder for future extensions. Drivers and applications
	must set this to 0.
    * - __u32
      - ``request_fd``
      - The file descriptor of the request to queue the buffer to. If the flag
        ``V4L2_BUF_FLAG_REQUEST_FD`` is set, then the buffer will be
	queued to this request. If the flag is not set, then this field will
	be ignored.

	The ``V4L2_BUF_FLAG_REQUEST_FD`` flag and this field are only used by
	:ref:`ioctl VIDIOC_QBUF <VIDIOC_QBUF>` and ignored by other ioctls that
	take a :c:type:`v4l2_buffer` as argument.

	Applications should not set ``V4L2_BUF_FLAG_REQUEST_FD`` for any ioctls
	other than :ref:`VIDIOC_QBUF <VIDIOC_QBUF>`.

	If the device does not support requests, then ``EBADR`` will be returned.
	If requests are supported but an invalid request file descriptor is
	given, then ``EINVAL`` will be returned.



.. c:type:: v4l2_plane

struct v4l2_plane
=================

.. tabularcolumns:: |p{3.5cm}|p{3.5cm}|p{3.5cm}|p{7.0cm}|

.. cssclass:: longtable

.. flat-table::
    :header-rows:  0
    :stub-columns: 0
    :widths:       1 1 2

    * - __u32
      - ``bytesused``
      - The number of bytes occupied by data in the plane (its payload).
	Drivers must set this field when ``type`` refers to a capture
	stream, applications when it refers to an output stream. If the
	application sets this to 0 for an output stream, then
	``bytesused`` will be set to the size of the plane (see the
	``length`` field of this struct) by the driver.

	.. note::

	   Note that the actual image data starts at ``data_offset``
	   which may not be 0.
    * - __u32
      - ``length``
      - Size in bytes of the plane (not its payload). This is set by the
	driver based on the calls to
	:ref:`VIDIOC_REQBUFS` and/or
	:ref:`VIDIOC_CREATE_BUFS`.
    * - union {
      - ``m``
    * - __u32
      - ``mem_offset``
      - When the memory type in the containing struct
	:c:type:`v4l2_buffer` is ``V4L2_MEMORY_MMAP``, this
	is the value that should be passed to :ref:`mmap() <func-mmap>`,
	similar to the ``offset`` field in struct
	:c:type:`v4l2_buffer`.
    * - unsigned long
      - ``userptr``
      - When the memory type in the containing struct
	:c:type:`v4l2_buffer` is ``V4L2_MEMORY_USERPTR``,
	this is a userspace pointer to the memory allocated for this plane
	by an application.
    * - int
      - ``fd``
      - When the memory type in the containing struct
	:c:type:`v4l2_buffer` is ``V4L2_MEMORY_DMABUF``,
	this is a file descriptor associated with a DMABUF buffer, similar
	to the ``fd`` field in struct :c:type:`v4l2_buffer`.
    * - }
      -
    * - __u32
      - ``data_offset``
      - Offset in bytes to video data in the plane. Drivers must set this
	field when ``type`` refers to a capture stream, applications when
	it refers to an output stream.

	.. note::

	   That data_offset is included  in ``bytesused``. So the
	   size of the image in the plane is ``bytesused``-``data_offset``
	   at offset ``data_offset`` from the start of the plane.
    * - __u32
      - ``reserved[11]``
      - Reserved for future use. Should be zeroed by drivers and
	applications.



.. c:type:: v4l2_buf_type

enum v4l2_buf_type
==================

.. cssclass:: longtable

.. tabularcolumns:: |p{7.8cm}|p{0.6cm}|p{9.1cm}|

.. flat-table::
    :header-rows:  0
    :stub-columns: 0
    :widths:       4 1 9

    * - ``V4L2_BUF_TYPE_VIDEO_CAPTURE``
      - 1
      - Buffer of a single-planar video capture stream, see
	:ref:`capture`.
    * - ``V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE``
      - 9
      - Buffer of a multi-planar video capture stream, see
	:ref:`capture`.
    * - ``V4L2_BUF_TYPE_VIDEO_OUTPUT``
      - 2
      - Buffer of a single-planar video output stream, see
	:ref:`output`.
    * - ``V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE``
      - 10
      - Buffer of a multi-planar video output stream, see :ref:`output`.
    * - ``V4L2_BUF_TYPE_VIDEO_OVERLAY``
      - 3
      - Buffer for video overlay, see :ref:`overlay`.
    * - ``V4L2_BUF_TYPE_VBI_CAPTURE``
      - 4
      - Buffer of a raw VBI capture stream, see :ref:`raw-vbi`.
    * - ``V4L2_BUF_TYPE_VBI_OUTPUT``
      - 5
      - Buffer of a raw VBI output stream, see :ref:`raw-vbi`.
    * - ``V4L2_BUF_TYPE_SLICED_VBI_CAPTURE``
      - 6
      - Buffer of a sliced VBI capture stream, see :ref:`sliced`.
    * - ``V4L2_BUF_TYPE_SLICED_VBI_OUTPUT``
      - 7
      - Buffer of a sliced VBI output stream, see :ref:`sliced`.
    * - ``V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY``
      - 8
      - Buffer for video output overlay (OSD), see :ref:`osd`.
    * - ``V4L2_BUF_TYPE_SDR_CAPTURE``
      - 11
      - Buffer for Software Defined Radio (SDR) capture stream, see
	:ref:`sdr`.
    * - ``V4L2_BUF_TYPE_SDR_OUTPUT``
      - 12
      - Buffer for Software Defined Radio (SDR) output stream, see
	:ref:`sdr`.
    * - ``V4L2_BUF_TYPE_META_CAPTURE``
      - 13
      - Buffer for metadata capture, see :ref:`metadata`.
    * - ``V4L2_BUF_TYPE_META_OUTPUT``
      - 14
      - Buffer for metadata output, see :ref:`metadata`.



.. _buffer-flags:

Buffer Flags
============

.. raw:: latex

    \small

.. tabularcolumns:: |p{7.0cm}|p{2.1cm}|p{8.4cm}|

.. cssclass:: longtable

.. flat-table::
    :header-rows:  0
    :stub-columns: 0
    :widths:       3 1 4

    * .. _`V4L2-BUF-FLAG-MAPPED`:

      - ``V4L2_BUF_FLAG_MAPPED``
      - 0x00000001
      - The buffer resides in device memory and has been mapped into the
	application's address space, see :ref:`mmap` for details.
	Drivers set or clear this flag when the
	:ref:`VIDIOC_QUERYBUF`,
	:ref:`VIDIOC_QBUF` or
	:ref:`VIDIOC_DQBUF <VIDIOC_QBUF>` ioctl is called. Set by the
	driver.
    * .. _`V4L2-BUF-FLAG-QUEUED`:

      - ``V4L2_BUF_FLAG_QUEUED``
      - 0x00000002
      - Internally drivers maintain two buffer queues, an incoming and
	outgoing queue. When this flag is set, the buffer is currently on
	the incoming queue. It automatically moves to the outgoing queue
	after the buffer has been filled (capture devices) or displayed
	(output devices). Drivers set or clear this flag when the
	``VIDIOC_QUERYBUF`` ioctl is called. After (successful) calling
	the ``VIDIOC_QBUF``\ ioctl it is always set and after
	``VIDIOC_DQBUF`` always cleared.
    * .. _`V4L2-BUF-FLAG-DONE`:

      - ``V4L2_BUF_FLAG_DONE``
      - 0x00000004
      - When this flag is set, the buffer is currently on the outgoing
	queue, ready to be dequeued from the driver. Drivers set or clear
	this flag when the ``VIDIOC_QUERYBUF`` ioctl is called. After
	calling the ``VIDIOC_QBUF`` or ``VIDIOC_DQBUF`` it is always
	cleared. Of course a buffer cannot be on both queues at the same
	time, the ``V4L2_BUF_FLAG_QUEUED`` and ``V4L2_BUF_FLAG_DONE`` flag
	are mutually exclusive. They can be both cleared however, then the
	buffer is in "dequeued" state, in the application domain so to
	say.
    * .. _`V4L2-BUF-FLAG-ERROR`:

      - ``V4L2_BUF_FLAG_ERROR``
      - 0x00000040
      - When this flag is set, the buffer has been dequeued successfully,
	although the data might have been corrupted. This is recoverable,
	streaming may continue as normal and the buffer may be reused
	normally. Drivers set this flag when the ``VIDIOC_DQBUF`` ioctl is
	called.
    * .. _`V4L2-BUF-FLAG-IN-REQUEST`:

      - ``V4L2_BUF_FLAG_IN_REQUEST``
      - 0x00000080
      - This buffer is part of a request that hasn't been queued yet.
    * .. _`V4L2-BUF-FLAG-KEYFRAME`:

      - ``V4L2_BUF_FLAG_KEYFRAME``
      - 0x00000008
      - Drivers set or clear this flag when calling the ``VIDIOC_DQBUF``
	ioctl. It may be set by video capture devices when the buffer
	contains a compressed image which is a key frame (or field), i. e.
	can be decompressed on its own. Also known as an I-frame.
	Applications can set this bit when ``type`` refers to an output
	stream.
    * .. _`V4L2-BUF-FLAG-PFRAME`:

      - ``V4L2_BUF_FLAG_PFRAME``
      - 0x00000010
      - Similar to ``V4L2_BUF_FLAG_KEYFRAME`` this flags predicted frames
	or fields which contain only differences to a previous key frame.
	Applications can set this bit when ``type`` refers to an output
	stream.
    * .. _`V4L2-BUF-FLAG-BFRAME`:

      - ``V4L2_BUF_FLAG_BFRAME``
      - 0x00000020
      - Similar to ``V4L2_BUF_FLAG_KEYFRAME`` this flags a bi-directional
	predicted frame or field which contains only the differences
	between the current frame and both the preceding and following key
	frames to specify its content. Applications can set this bit when
	``type`` refers to an output stream.
    * .. _`V4L2-BUF-FLAG-TIMECODE`:

      - ``V4L2_BUF_FLAG_TIMECODE``
      - 0x00000100
      - The ``timecode`` field is valid. Drivers set or clear this flag
	when the ``VIDIOC_DQBUF`` ioctl is called. Applications can set
	this bit and the corresponding ``timecode`` structure when
	``type`` refers to an output stream.
    * .. _`V4L2-BUF-FLAG-PREPARED`:

      - ``V4L2_BUF_FLAG_PREPARED``
      - 0x00000400
      - The buffer has been prepared for I/O and can be queued by the
	application. Drivers set or clear this flag when the
	:ref:`VIDIOC_QUERYBUF`,
	:ref:`VIDIOC_PREPARE_BUF <VIDIOC_QBUF>`,
	:ref:`VIDIOC_QBUF` or
	:ref:`VIDIOC_DQBUF <VIDIOC_QBUF>` ioctl is called.
    * .. _`V4L2-BUF-FLAG-NO-CACHE-INVALIDATE`:

      - ``V4L2_BUF_FLAG_NO_CACHE_INVALIDATE``
      - 0x00000800
      - Caches do not have to be invalidated for this buffer. Typically
	applications shall use this flag if the data captured in the
	buffer is not going to be touched by the CPU, instead the buffer
	will, probably, be passed on to a DMA-capable hardware unit for
	further processing or output.
    * .. _`V4L2-BUF-FLAG-NO-CACHE-CLEAN`:

      - ``V4L2_BUF_FLAG_NO_CACHE_CLEAN``
      - 0x00001000
      - Caches do not have to be cleaned for this buffer. Typically
	applications shall use this flag for output buffers if the data in
	this buffer has not been created by the CPU but by some
	DMA-capable unit, in which case caches have not been used.
    * .. _`V4L2-BUF-FLAG-M2M-HOLD-CAPTURE-BUF`:

      - ``V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF``
      - 0x00000200
      - Only valid if ``V4L2_BUF_CAP_SUPPORTS_M2M_HOLD_CAPTURE_BUF`` is
	set. It is typically used with stateless decoders where multiple
	output buffers each decode to a slice of the decoded frame.
	Applications can set this flag when queueing the output buffer
	to prevent the driver from dequeueing the capture buffer after
	the output buffer has been decoded (i.e. the capture buffer is
	'held'). If the timestamp of this output buffer differs from that
	of the previous output buffer, then that indicates the start of a
	new frame and the previously held capture buffer is dequeued.
    * .. _`V4L2-BUF-FLAG-LAST`:

      - ``V4L2_BUF_FLAG_LAST``
      - 0x00100000
      - Last buffer produced by the hardware. mem2mem codec drivers set
	this flag on the capture queue for the last buffer when the
	:ref:`VIDIOC_QUERYBUF` or
	:ref:`VIDIOC_DQBUF <VIDIOC_QBUF>` ioctl is called. Due to
	hardware limitations, the last buffer may be empty. In this case
	the driver will set the ``bytesused`` field to 0, regardless of
	the format. Any Any subsequent call to the
	:ref:`VIDIOC_DQBUF <VIDIOC_QBUF>` ioctl will not block anymore,
	but return an ``EPIPE`` error code.
    * .. _`V4L2-BUF-FLAG-REQUEST-FD`:

      - ``V4L2_BUF_FLAG_REQUEST_FD``
      - 0x00800000
      - The ``request_fd`` field contains a valid file descriptor.
    * .. _`V4L2-BUF-FLAG-TIMESTAMP-MASK`:

      - ``V4L2_BUF_FLAG_TIMESTAMP_MASK``
      - 0x0000e000
      - Mask for timestamp types below. To test the timestamp type, mask
	out bits not belonging to timestamp type by performing a logical
	and operation with buffer flags and timestamp mask.
    * .. _`V4L2-BUF-FLAG-TIMESTAMP-UNKNOWN`:

      - ``V4L2_BUF_FLAG_TIMESTAMP_UNKNOWN``
      - 0x00000000
      - Unknown timestamp type. This type is used by drivers before Linux
	3.9 and may be either monotonic (see below) or realtime (wall
	clock). Monotonic clock has been favoured in embedded systems
	whereas most of the drivers use the realtime clock. Either kinds
	of timestamps are available in user space via
	:c:func:`clock_gettime` using clock IDs ``CLOCK_MONOTONIC``
	and ``CLOCK_REALTIME``, respectively.
    * .. _`V4L2-BUF-FLAG-TIMESTAMP-MONOTONIC`:

      - ``V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC``
      - 0x00002000
      - The buffer timestamp has been taken from the ``CLOCK_MONOTONIC``
	clock. To access the same clock outside V4L2, use
	:c:func:`clock_gettime`.
    * .. _`V4L2-BUF-FLAG-TIMESTAMP-COPY`:

      - ``V4L2_BUF_FLAG_TIMESTAMP_COPY``
      - 0x00004000
      - The CAPTURE buffer timestamp has been taken from the corresponding
	OUTPUT buffer. This flag applies only to mem2mem devices.
    * .. _`V4L2-BUF-FLAG-TSTAMP-SRC-MASK`:

      - ``V4L2_BUF_FLAG_TSTAMP_SRC_MASK``
      - 0x00070000
      - Mask for timestamp sources below. The timestamp source defines the
	point of time the timestamp is taken in relation to the frame.
	Logical 'and' operation between the ``flags`` field and
	``V4L2_BUF_FLAG_TSTAMP_SRC_MASK`` produces the value of the
	timestamp source. Applications must set the timestamp source when
	``type`` refers to an output stream and
	``V4L2_BUF_FLAG_TIMESTAMP_COPY`` is set.
    * .. _`V4L2-BUF-FLAG-TSTAMP-SRC-EOF`:

      - ``V4L2_BUF_FLAG_TSTAMP_SRC_EOF``
      - 0x00000000
      - End Of Frame. The buffer timestamp has been taken when the last
	pixel of the frame has been received or the last pixel of the
	frame has been transmitted. In practice, software generated
	timestamps will typically be read from the clock a small amount of
	time after the last pixel has been received or transmitten,
	depending on the system and other activity in it.
    * .. _`V4L2-BUF-FLAG-TSTAMP-SRC-SOE`:

      - ``V4L2_BUF_FLAG_TSTAMP_SRC_SOE``
      - 0x00010000
      - Start Of Exposure. The buffer timestamp has been taken when the
	exposure of the frame has begun. This is only valid for the
	``V4L2_BUF_TYPE_VIDEO_CAPTURE`` buffer type.

.. raw:: latex

    \normalsize


.. c:type:: v4l2_memory

enum v4l2_memory
================

.. tabularcolumns:: |p{5.0cm}|p{0.8cm}|p{11.7cm}|

.. flat-table::
    :header-rows:  0
    :stub-columns: 0
    :widths:       3 1 4

    * - ``V4L2_MEMORY_MMAP``
      - 1
      - The buffer is used for :ref:`memory mapping <mmap>` I/O.
    * - ``V4L2_MEMORY_USERPTR``
      - 2
      - The buffer is used for :ref:`user pointer <userp>` I/O.
    * - ``V4L2_MEMORY_OVERLAY``
      - 3
      - [to do]
    * - ``V4L2_MEMORY_DMABUF``
      - 4
      - The buffer is used for :ref:`DMA shared buffer <dmabuf>` I/O.



Timecodes
=========

The :c:type:`v4l2_buffer_timecode` structure is designed to hold a
:ref:`smpte12m` or similar timecode.
(struct :c:type:`timeval` timestamps are stored in the struct
:c:type:`v4l2_buffer` ``timestamp`` field.)


.. c:type:: v4l2_timecode

struct v4l2_timecode
--------------------

.. tabularcolumns:: |p{1.4cm}|p{2.8cm}|p{12.3cm}|

.. flat-table::
    :header-rows:  0
    :stub-columns: 0
    :widths:       1 1 2

    * - __u32
      - ``type``
      - Frame rate the timecodes are based on, see :ref:`timecode-type`.
    * - __u32
      - ``flags``
      - Timecode flags, see :ref:`timecode-flags`.
    * - __u8
      - ``frames``
      - Frame count, 0 ... 23/24/29/49/59, depending on the type of
	timecode.
    * - __u8
      - ``seconds``
      - Seconds count, 0 ... 59. This is a binary, not BCD number.
    * - __u8
      - ``minutes``
      - Minutes count, 0 ... 59. This is a binary, not BCD number.
    * - __u8
      - ``hours``
      - Hours count, 0 ... 29. This is a binary, not BCD number.
    * - __u8
      - ``userbits``\ [4]
      - The "user group" bits from the timecode.



.. _timecode-type:

Timecode Types
--------------

.. tabularcolumns:: |p{5.6cm}|p{0.8cm}|p{11.1cm}|

.. flat-table::
    :header-rows:  0
    :stub-columns: 0
    :widths:       3 1 4

    * - ``V4L2_TC_TYPE_24FPS``
      - 1
      - 24 frames per second, i. e. film.
    * - ``V4L2_TC_TYPE_25FPS``
      - 2
      - 25 frames per second, i. e. PAL or SECAM video.
    * - ``V4L2_TC_TYPE_30FPS``
      - 3
      - 30 frames per second, i. e. NTSC video.
    * - ``V4L2_TC_TYPE_50FPS``
      - 4
      -
    * - ``V4L2_TC_TYPE_60FPS``
      - 5
      -



.. _timecode-flags:

Timecode Flags
--------------

.. tabularcolumns:: |p{6.6cm}|p{1.4cm}|p{9.5cm}|

.. flat-table::
    :header-rows:  0
    :stub-columns: 0
    :widths:       3 1 4

    * - ``V4L2_TC_FLAG_DROPFRAME``
      - 0x0001
      - Indicates "drop frame" semantics for counting frames in 29.97 fps
	material. When set, frame numbers 0 and 1 at the start of each
	minute, except minutes 0, 10, 20, 30, 40, 50 are omitted from the
	count.
    * - ``V4L2_TC_FLAG_COLORFRAME``
      - 0x0002
      - The "color frame" flag.
    * - ``V4L2_TC_USERBITS_field``
      - 0x000C
      - Field mask for the "binary group flags".
    * - ``V4L2_TC_USERBITS_USERDEFINED``
      - 0x0000
      - Unspecified format.
    * - ``V4L2_TC_USERBITS_8BITCHARS``
      - 0x0008
      - 8-bit ISO characters.