About Kernel Documentation Linux Kernel Contact Linux Resources Linux Blog

Documentation / device-mapper / cache-policies.txt

Custom Search

Based on kernel version 4.8. Page generated on 2016-10-06 23:10 EST.

1	Guidance for writing policies
2	=============================
4	Try to keep transactionality out of it.  The core is careful to
5	avoid asking about anything that is migrating.  This is a pain, but
6	makes it easier to write the policies.
8	Mappings are loaded into the policy at construction time.
10	Every bio that is mapped by the target is referred to the policy.
11	The policy can return a simple HIT or MISS or issue a migration.
13	Currently there's no way for the policy to issue background work,
14	e.g. to start writing back dirty blocks that are going to be evicted
15	soon.
17	Because we map bios, rather than requests it's easy for the policy
18	to get fooled by many small bios.  For this reason the core target
19	issues periodic ticks to the policy.  It's suggested that the policy
20	doesn't update states (eg, hit counts) for a block more than once
21	for each tick.  The core ticks by watching bios complete, and so
22	trying to see when the io scheduler has let the ios run.
25	Overview of supplied cache replacement policies
26	===============================================
28	multiqueue (mq)
29	---------------
31	This policy is now an alias for smq (see below).
33	The following tunables are accepted, but have no effect:
35		'sequential_threshold <#nr_sequential_ios>'
36		'random_threshold <#nr_random_ios>'
37		'read_promote_adjustment <value>'
38		'write_promote_adjustment <value>'
39		'discard_promote_adjustment <value>'
41	Stochastic multiqueue (smq)
42	---------------------------
44	This policy is the default.
46	The stochastic multi-queue (smq) policy addresses some of the problems
47	with the multiqueue (mq) policy.
49	The smq policy (vs mq) offers the promise of less memory utilization,
50	improved performance and increased adaptability in the face of changing
51	workloads.  smq also does not have any cumbersome tuning knobs.
53	Users may switch from "mq" to "smq" simply by appropriately reloading a
54	DM table that is using the cache target.  Doing so will cause all of the
55	mq policy's hints to be dropped.  Also, performance of the cache may
56	degrade slightly until smq recalculates the origin device's hotspots
57	that should be cached.
59	Memory usage:
60	The mq policy used a lot of memory; 88 bytes per cache block on a 64
61	bit machine.
63	smq uses 28bit indexes to implement it's data structures rather than
64	pointers.  It avoids storing an explicit hit count for each block.  It
65	has a 'hotspot' queue, rather than a pre-cache, which uses a quarter of
66	the entries (each hotspot block covers a larger area than a single
67	cache block).
69	All this means smq uses ~25bytes per cache block.  Still a lot of
70	memory, but a substantial improvement nontheless.
72	Level balancing:
73	mq placed entries in different levels of the multiqueue structures
74	based on their hit count (~ln(hit count)).  This meant the bottom
75	levels generally had the most entries, and the top ones had very
76	few.  Having unbalanced levels like this reduced the efficacy of the
77	multiqueue.
79	smq does not maintain a hit count, instead it swaps hit entries with
80	the least recently used entry from the level above.  The overall
81	ordering being a side effect of this stochastic process.  With this
82	scheme we can decide how many entries occupy each multiqueue level,
83	resulting in better promotion/demotion decisions.
85	Adaptability:
86	The mq policy maintained a hit count for each cache block.  For a
87	different block to get promoted to the cache it's hit count has to
88	exceed the lowest currently in the cache.  This meant it could take a
89	long time for the cache to adapt between varying IO patterns.
91	smq doesn't maintain hit counts, so a lot of this problem just goes
92	away.  In addition it tracks performance of the hotspot queue, which
93	is used to decide which blocks to promote.  If the hotspot queue is
94	performing badly then it starts moving entries more quickly between
95	levels.  This lets it adapt to new IO patterns very quickly.
97	Performance:
98	Testing smq shows substantially better performance than mq.
100	cleaner
101	-------
103	The cleaner writes back all dirty blocks in a cache to decommission it.
105	Examples
106	========
108	The syntax for a table is:
109		cache <metadata dev> <cache dev> <origin dev> <block size>
110		<#feature_args> [<feature arg>]*
111		<policy> <#policy_args> [<policy arg>]*
113	The syntax to send a message using the dmsetup command is:
114		dmsetup message <mapped device> 0 sequential_threshold 1024
115		dmsetup message <mapped device> 0 random_threshold 8
117	Using dmsetup:
118		dmsetup create blah --table "0 268435456 cache /dev/sdb /dev/sdc \
119		    /dev/sdd 512 0 mq 4 sequential_threshold 1024 random_threshold 8"
120		creates a 128GB large mapped device named 'blah' with the
121		sequential threshold set to 1024 and the random_threshold set to 8.
Hide Line Numbers
About Kernel Documentation Linux Kernel Contact Linux Resources Linux Blog

Information is copyright its respective author. All material is available from the Linux Kernel Source distributed under a GPL License. This page is provided as a free service by mjmwired.net.