About Kernel Documentation Linux Kernel Contact Linux Resources Linux Blog

Documentation / flexible-arrays.txt




Custom Search

Based on kernel version 4.13.3. Page generated on 2017-09-23 13:55 EST.

1	===================================
2	Using flexible arrays in the kernel
3	===================================
4	
5	:Updated: Last updated for 2.6.32
6	:Author: Jonathan Corbet <corbet@lwn.net>
7	
8	Large contiguous memory allocations can be unreliable in the Linux kernel.
9	Kernel programmers will sometimes respond to this problem by allocating
10	pages with vmalloc().  This solution not ideal, though.  On 32-bit systems,
11	memory from vmalloc() must be mapped into a relatively small address space;
12	it's easy to run out.  On SMP systems, the page table changes required by
13	vmalloc() allocations can require expensive cross-processor interrupts on
14	all CPUs.  And, on all systems, use of space in the vmalloc() range
15	increases pressure on the translation lookaside buffer (TLB), reducing the
16	performance of the system.
17	
18	In many cases, the need for memory from vmalloc() can be eliminated by
19	piecing together an array from smaller parts; the flexible array library
20	exists to make this task easier.
21	
22	A flexible array holds an arbitrary (within limits) number of fixed-sized
23	objects, accessed via an integer index.  Sparse arrays are handled
24	reasonably well.  Only single-page allocations are made, so memory
25	allocation failures should be relatively rare.  The down sides are that the
26	arrays cannot be indexed directly, individual object size cannot exceed the
27	system page size, and putting data into a flexible array requires a copy
28	operation.  It's also worth noting that flexible arrays do no internal
29	locking at all; if concurrent access to an array is possible, then the
30	caller must arrange for appropriate mutual exclusion.
31	
32	The creation of a flexible array is done with::
33	
34	    #include <linux/flex_array.h>
35	
36	    struct flex_array *flex_array_alloc(int element_size,
37						unsigned int total,
38						gfp_t flags);
39	
40	The individual object size is provided by element_size, while total is the
41	maximum number of objects which can be stored in the array.  The flags
42	argument is passed directly to the internal memory allocation calls.  With
43	the current code, using flags to ask for high memory is likely to lead to
44	notably unpleasant side effects.
45	
46	It is also possible to define flexible arrays at compile time with::
47	
48	    DEFINE_FLEX_ARRAY(name, element_size, total);
49	
50	This macro will result in a definition of an array with the given name; the
51	element size and total will be checked for validity at compile time.
52	
53	Storing data into a flexible array is accomplished with a call to::
54	
55	    int flex_array_put(struct flex_array *array, unsigned int element_nr,
56	    		       void *src, gfp_t flags);
57	
58	This call will copy the data from src into the array, in the position
59	indicated by element_nr (which must be less than the maximum specified when
60	the array was created).  If any memory allocations must be performed, flags
61	will be used.  The return value is zero on success, a negative error code
62	otherwise.
63	
64	There might possibly be a need to store data into a flexible array while
65	running in some sort of atomic context; in this situation, sleeping in the
66	memory allocator would be a bad thing.  That can be avoided by using
67	GFP_ATOMIC for the flags value, but, often, there is a better way.  The
68	trick is to ensure that any needed memory allocations are done before
69	entering atomic context, using::
70	
71	    int flex_array_prealloc(struct flex_array *array, unsigned int start,
72				    unsigned int nr_elements, gfp_t flags);
73	
74	This function will ensure that memory for the elements indexed in the range
75	defined by start and nr_elements has been allocated.  Thereafter, a
76	flex_array_put() call on an element in that range is guaranteed not to
77	block.
78	
79	Getting data back out of the array is done with::
80	
81	    void *flex_array_get(struct flex_array *fa, unsigned int element_nr);
82	
83	The return value is a pointer to the data element, or NULL if that
84	particular element has never been allocated.
85	
86	Note that it is possible to get back a valid pointer for an element which
87	has never been stored in the array.  Memory for array elements is allocated
88	one page at a time; a single allocation could provide memory for several
89	adjacent elements.  Flexible array elements are normally initialized to the
90	value FLEX_ARRAY_FREE (defined as 0x6c in <linux/poison.h>), so errors
91	involving that number probably result from use of unstored array entries.
92	Note that, if array elements are allocated with __GFP_ZERO, they will be
93	initialized to zero and this poisoning will not happen.
94	
95	Individual elements in the array can be cleared with::
96	
97	    int flex_array_clear(struct flex_array *array, unsigned int element_nr);
98	
99	This function will set the given element to FLEX_ARRAY_FREE and return
100	zero.  If storage for the indicated element is not allocated for the array,
101	flex_array_clear() will return -EINVAL instead.  Note that clearing an
102	element does not release the storage associated with it; to reduce the
103	allocated size of an array, call::
104	
105	    int flex_array_shrink(struct flex_array *array);
106	
107	The return value will be the number of pages of memory actually freed.
108	This function works by scanning the array for pages containing nothing but
109	FLEX_ARRAY_FREE bytes, so (1) it can be expensive, and (2) it will not work
110	if the array's pages are allocated with __GFP_ZERO.
111	
112	It is possible to remove all elements of an array with a call to::
113	
114	    void flex_array_free_parts(struct flex_array *array);
115	
116	This call frees all elements, but leaves the array itself in place.
117	Freeing the entire array is done with::
118	
119	    void flex_array_free(struct flex_array *array);
120	
121	As of this writing, there are no users of flexible arrays in the mainline
122	kernel.  The functions described here are also not exported to modules;
123	that will probably be fixed when somebody comes up with a need for it.
Hide Line Numbers
About Kernel Documentation Linux Kernel Contact Linux Resources Linux Blog

Information is copyright its respective author. All material is available from the Linux Kernel Source distributed under a GPL License. This page is provided as a free service by mjmwired.net.